Economic Development, Jobs, Transport and Resources

Genomic prediction for feed efficiency: a validation of accuracy and its impact on methane emissions of dairy cows

Phuong HO Agriculture Victoria Research Division

Introduction

- Feed efficiency is a major determinant of profitability and environmental impact of dairy production
 - ✓ Selection for feed efficiency is an important breeding objective in dairy industry
- But, it is a difficult and expensive to measure trait

2

Introduction

J. Dairy Sci. 98:7340–7350 http://dx.doi.org/10.3168/jds.2015-9621 © American Dairy Science Association[®], 2015.

Hot topic: Definition and implementation of a breeding value for feed efficiency in dairy cows

J. E. Pryce,*^{†1} O. Gonzalez-Recio,* G. Nieuwhof,*[‡] W. J. Wales,§ M. P. Coffey,# B. J. Hayes,*[†] and M. E. Goddard*II

*Department of Economic Development, Jobs, Transport and Resources and Dairy Futures Cooperative Research Centre, Agribio, 5 Ring Road, Bundoora, VIC 3083, Australia

†School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia

‡Australian Dairy Herd Improvement Scheme, 22 William Street, Melbourne, VIC 3000, Australia

§Department of Economic Development, Jobs, Transport and Resources, Ellinbank, VIC 3820, Australia

#SRUC, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom

IFaculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Australia

It is essential to validate its accuracy and resulting (environmental) impact of selected cows using an independent data set Example Feed Saved ABVs

Holstein	BPI	FEED SAVED	
QI TINB	BALANCED PERFORMANCE INDEX	FEED SAVED ABV	
A	336	- 43	
В	320	- 147	
C	302	-4	
D	301	110	
E	285	2	
F	282	- 6	
G	277	72	
н	277	- 26	
1	274	18	
L	268	111	
	\$ profit/cow/year	kg feed saved /cow/year	

Bostonio Develatinania. Jetto, Tienegort end Resources

Objectives

- Validate the accuracy of the genomic estimated breeding values for residual feed intake (RFI): a major component of Feed Saved
- Compare methane emissions of low (efficient) and high RFI (inefficient) cows

Boostonio Develatinari Jeba, Transport onal Resources

Data

- 32-d experiments conducted on 160 cows at Ellinbank Dairy Research Centre (2015): 40 cows/batch
- Cows were fed with *Lucerne* cubes plus grain supplements
- Records include: milk yield, milk fat, milk protein, milk lactose, dry matter intake, body weight, body condition score.
- Methane emissions: modified SF6 tracer technique (Deighton et al. 2014)
- RFI GEBV were obtained from DataGene → 112 cows remained for analysis

Repriorate Development Jobs, Trienagert and Recovers

Table 1. A summary of lactation performance, RFI and methane emissions of 112 cows

	Batch 1	Batch 2	Batch 3	Batch 4
Number of cows	28	33	31	20
Days in milk	79 ± 4	91 ± 7	80 ± 6	63 ± 22
Residual feed intake (kg/d)	-0.03 ± 0.9	0.05 ± 0.8	-0.005 ± 0.9	0.02 ± 0.5
Dry matter intake (kgDM/d)	22.0 ± 3.2	24.8 ± 2.9	23.1 ± 2.9	24.3 ± 2.2
Milk yield (kg/d)	22.5 ± 4.0	25.6 ± 4.6	23.2 ± 3.8	29.7 ± 4.2
Body weight (kg)	511 ± 73	544 ± 70	523 ± 51	569 ± 59
Methane production (g/d)	454 ± 60	450 ± 65	495 ± 66	543 ± 38
Methane yield (g/kgDMI)	19.5 ± 2.5	16.4 ± 1.9	20.5 ± 2.3	18.3 ± 1.4
Methane intensity (g/kgMY)	20.1 ± 3.6	21.5 ± 3.9	21.9 ± 3.4	20.8 ± 2.7

Begingente Develagement. Jeba, Transport: entil Resources AGRICULTURE TETORIA

Statistical Analysis

Residual feed intake:

✓ $DMI = \mu + Parity + Batch + DIM + ECM + BW + △BW + RFI$

Results

~ r = 0.37 of Pryce et al (2015) on 78 cows

Figure 1. Scatter plot of GEBV and RFI phenotype of 112 cows

The accuracy of the current RFI GEBV is low

Begingente Develwonnent Jette, Thengest: ongi Resources AGRICULTURE TRATORIA

Results

Table 2. Performance and methane emissions (mean ± SD) of low and high residual feed intake (RFI) cows

	Low RFI	High RFI	P-value
Number of cows	30	30	
Milk yield (kg/d)	23.9 ± 4.6	24.2 ± 4.7	NS
Dry matter intake (kgDM/d)	21.9 ± 2.5	24.5 ± 2.9	***
Body weight (kg)	520 ± 65	529 ± 60	NS
Residual feed intake (kg/d)	-1.0 ± 0.6	1.0 ± 0.4	* * *
Methane production (g/d)	471 ± 55	503 ± 67	*
Methane yield (g/kgDMI)	19.3 ± 2.6	18.6 ± 2.8	NS
Methane intensity (g/kgMY)	20.4 ± 3.3	21.4 ± 3.3	NS
Feed Saved (kg/year)	35.9 ± 92.3	15.3 ± 74.6	NS
RFI GEBV (kg/lifetime)	-51.6 ± 220.0	20.4 ± 230.2	NS

Reparatio Development. Jebs, Transport and Resources AGRICULTURE TETORIA

9

Results

Table 3. Performance and methane emissions (mean ± SD) of low and high residual feed intake (RFI) cows [Ranked by RFI GEBV)

	Low RFI GEBV	High RFI GEBV	P-value
Number of cows	30	30	
Milk yield (kg/d)	24.1 ± 4.9	24.9 ± 4.5	NS
Dry matter intake (kgDM/d)	23.1 ± 3.3	23.1 ± 2.5	NS
Body weight (kg)	530 ± 67	521 ± 64	NS
Residual feed intake (kg/d)	-0.2 ± 1.1	0.004 ± 0.7	NS
Methane production (g/d)	477 ± 73	488±62	NS
Methane yield (g/kgDMI)	18.3 ± 2.5	18.2 ± 2.8	NS
Methane intensity (g/kgMY)	21.1 ± 3.5	20.8 ± 3.4	NS
Feed Saved (kg/year)	88.4 ± 61.7	-49.5 ± 65.7	* * *
RFI GEBV (kg/lifetime)	-277 ± 168	279±133	* * *
and the second se			ASPICIUTI

Jebs, Transport ortol Personnes ARICULTURE TETORIA

10

Conclusions

- Accuracy of the current genomic prediction of feed efficiency is low and thus more data is required for an improvement
- Low RFI cows produced significantly less methane than high RFI cows

Beginantis Development Jebs, Trangoort and Resources

Acknowledgements

Jennie Pryce Tingting Wang Gert Nieuwhof Bill Wales

MPROS

DEDJTR-Agribio DEDJTR-Agribio DataGene DEDJTR-Ellinbank

"Improving farm profitability by demonstrating the value of genetics and herd improvement"

THANK YOU FOR YOUR ATTENTION!

HER, THENDER, 7